sphinx Documentation
Release 0.1

anita kean

November 19, 2009

1 Table of Contents
1.1 General Sphinx usage
1.2 Documenting Python

2 Indices and tables
Bibliography
Module Index

Index

1.3 Indicesandtables
1.4 Glossaryo v i i

CONTENTS

35
37
39

41

sphinx Documentation, Release 0.1

Sphinx was released in early 2008 as a tool to process the python documentation

* It renders text with relatively little markup into html/pdf

e LaTeX‘s math-mode is available.

* It renders code with language-specific highlighting (defaults to python)

* provides most of the features of html and latex markup:

linking

referencing (sections, arbitrary locations)
indexing (terms, objects)

navigation (sections, optionally numbered)
inclusion (images, tables, text, code, objects)
exclusion (tag-based, e.g. for html/pdf)
math-mode (e.g. ¥ = cos(f) + isin(f))
citation

footnotes

* By default, has a Show Source link in its Table-of-Contents panel where you can view un-rendered text.

e Itis being actively developed.

* It has an active Usenet newsgroup sphinx-dev.

* Itis used by many projects now - you can learn from these.

The code depends on

e docutils (restructured text parser),

* jinja2 (templating tool) and

* pygments (highlighter).

* latex (fonts, mathematical formatting) - with the texlive package you’ll need latex-recommended,
latex-extra and fonts—-recommended.

see the sphinx extension docs for how to use ReportLab’s rst2pdf instead.

The markup extends restructured text of docutils - adding more directives and roles, and linking across documents.
As with ReST, text is white-space sensitive.

It has a set of extensions which includes:

autodoc extract docstrings from documented code

intersphinx link documentation to other python documentation

doctest run docstrings through doctest

linkcheck check all hyperlinks in document tree

CONTENTS 1

http://sphinx.pocoo.org
http://docs.python.org/dev/
http://groups.google.com/group/sphinx-dev
http://sphinx.pocoo.org/examples.html

sphinx Documentation, Release 0.1

2 CONTENTS

CHAPTER
ONE

TABLE OF CONTENTS

1.1 General Sphinx usage

With a few exceptions, sphinx markup is a superset of docutils restructured text.

In your sphinx installation, the doc directory contains sphinx-generated html as well as the source rst files. You can
regenerate html or pdf with the sphinx-build command.

This documentation contains an introduction to restructured text markup, but you will probably need to consult some
more detailed docutils ReSt documentation (e.g. docutils ReSt quickref)

Some initial pointers:

Note:
* tab-indentations in re-structured text are three spaces
* text enclosed in single back-ticks is interpreted

* text enclosed in double back-ticks is simply emphasized

1.1.1 A brief tour

getting started

A sphinx installation provides you with two command-line tools:
sphinx-quickstart initiate a sphinx project:

sphinx-build build the documentation (to html or pdf) from rst

sphinx-quickstart

At the command-line, type:
> sphinx-quickstart

for an interactive program which queries setup options and writes out a file conf.py in the root directory of your project.
Edit this file by hand afterwards to change configuration as you prefer.

I suggest accepting default locations.

http://docutils.sourceforge.net/index.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

sphinx Documentation, Release 0.1

Filenames referenced throughout the documentation are either relative to the current file
(e.g. subdirectory/filename, ../../filename), or relative to this root directory
(/root/subdirectory/../filename)

You can elect to have sphinx install a Makefile (linux) or make.bat (MS) which provides common invocations
of sphinx-build.

Extensions are offered in this setup - you can elect to include these now, or do so later ' :
¢ autodoc - to pull in docstrings from code
e intersphinx - to link with other python documentation

» pngmath or jsmath - to enable latex math-mode in html
sphinx-build

$ man sphinx_build
shows sphinx-build usage.

sphinx-build -b html -d build/doctrees source build/html
sphinx-build -b latex —-d build/doctrees source build/latex
sphinx-build -b doctest -d build/doctrees source

or use the convenience of make and the Makefile written by sphinx-quickstart:

$ make help (to see all possibilities)
S make html (to render docs as html)
Build finished. The HTML pages are in build/html.

S browse build/html/index.html (to view the html-docs)

S make latex (to render docs as tex)

S cd build/latex

> make all-pdf (to process tex file to pdf)

for the pdf, or

S make doctest

to run doctest on the docstrings of your documented code.

In addition, you’ll see from the make help that you can also run:

S make linkcheck

to have sphinx check all the links in your documents.

! by editing the extensions variable in the file conf . py

4 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

Footnote

root-directory location of the file conf . py from the sphinx-quickstart output.

some markup features
What follows is a mixture of restructured text and sphinx markup to illustrate some useful features. Refer to the
docutils and sphinx documentation for full resources.

We start out by mentioning a couple of ReST markups which sphinx uses. Both these are in paragraph-mode - they
occur as a blank line followed by a line at the same indentation as the previous non-blank line, starting with two
periods. They are

comment text following is ignored till the occurence of the next blank line:

commented text here

link label: this sets up a link to this location which is able to be referenced by the : ref : mode below:

. _link_label_here:

The label to reference is the text 1ink_label_ here.
The form of comments and link labels is similar to but different from the whole family of directives. They follow.
directives /paragraph mode): - a blank line followed by a line at the same indentation as the previous non-blank line,
beginning with:

directive_name_here::

(Each is followed by two colons.)

There are many directive names, including: code-block image include index literalinclude
math note only seealso table warning

Each of these performs an operation on the argument that follows. There may be modifying arguments on

subsequent indented lines (before any blank lines) which take the form:

:modification: modification_argument

See for example the form of equation-numbered math-equations and csv-tables.

roles (inline mode): - of the form:
:role_name_here: ‘text to be interpreted here’

Role names include:
math inline math-mode,

obj, meth, class, ... will reference any documented python objects see the source of Pulp example for an
illustration

ref will reference any labelled location (of the form .. _link_label_here:)

1.1. General Sphinx usage 5

sphinx Documentation, Release 0.1

literal blocks

Sphinx interprets anything following the form : : <newline> as pre-formatted text:

Text in a literal block::

The indented paragraph following this is highlighted and presented as
is.
results in :
Text in a literal block:
The indented paragraph following this is highlighted and presented as
is.
(Notice one of the colons has been removed.)

An isolated :: functions similarly - both colons removed in output.

code

Code-blocks are highlighted when they follow a .. code-block:: directive, where a trailing argument can
specify the language.

The following python code is thus highlighted simply by appearing in an indented region preceded by : ::

#!/usr/bin/env python
—%— encoding: utf-8 —#-
"""Fibonaccl sequences using generators

This program is part of "Dive Into Python", a free Python book for
experienced programmers. Visit http://diveintopython.org/ for the
latest version.

mmwn

def fibonacci (max) :
a, b=20,1
while a < max:
yield a
a, b =Db, atb

for n in fibonacci (1000) :
print n,

See Also:
literal includes for including code from files, numbering it and including code selectively.

Usingthe .. code-block:: <language here> directive, code will be appropriately presented. So:

code-block:: sh

echo S$PATH
for i in S$(seq 1 10);
do

6 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

echo $$(2%i+3))
done;

will be highlighted as shell-code:
echo S$SPATH
for i in $(seq 1 10);

do

echo $((2+i+3))
done;

inclusion

Text in files may be included into the current text either in-line, or pre-formatted.

in-line inclusion The .. include: : directive causes in-line inclusion:

include:: ../../src/some_file.txt

pre-formatted inclusion to include the file pre-formatted (e.g. quotes or code):
literalinclude:: /src/fib.py

This produces:

#!/usr/bin/env python

—+— encoding: utf-8 —*-—
"""Fibonaccl sequences using generators

This program is part of "Dive Into Python", a free Python book for
experienced programmers. Visit http://diveintopython.org/ for the

latest version.

mwn

def fibonacci (max) :
a, b =20, 1
while a < max:
yield a
a, b = b, atb

for n in fibonacci (1000) :
print n,

(the root directory which contains the file conf . py also contains src, so the file is named absolutely - relative to

that directory)

To see that file with line-numbers, add the :linenos: role:

literalinclude:: ../../src/fib.py
:linenos:

which gives:

1.1. General Sphinx usage

sphinx Documentation, Release 0.1

#!/usr/bin/env python
—x— encoding: utf-8 —x*-—
"""Fibonaccl sequences using generators

This program is part of "Dive Into Python", a free Python book for
experienced programmers. Visit http://diveintopython.org/ for the
latest version.

mwn

def fibonacci (max) :
a, b=20,1
while a < max:
yield a
a, b =Db, atb

for n in fibonacci (1000) :
print n,

To extract just lines 16, 17 of this file, add the : Lines: role:

literalinclude:: ../../src/fib.py
:lines: 16-17

to get

for n in fibonacci (1000) :
print n,

We can also include specific functions from python code with the : pyobject : role:

literalinclude:: /src/fib.py
:pyobject: fibonacci

def fibonacci (max) :
a, b =20, 1
while a < max:
yield a
a, b = b, atb

links

www-links Sphinx renders text of the form http://www. .. as a web-link without it requiring any markup.
Alternate text appears for the link when of the form (note the trailing underscore - rst-format):

‘Alternate text <http://www.google.com>'_

cross-references Sphinx extends restructured text in linking between documents. Links to other parts of the docu-

ment tree are of two forms:

1. section links, whose label precedes the section title

8 Chapter 1. Table of Contents

http://www.google.com

sphinx Documentation, Release 0.1

_label_here:

section title

This creates a hyperlink target (label) at this section title.

We then link to the section title in this or other documents with text of the form
:ref: ‘<label_here>"

A label different from the section title may be inserted too, with the form:
:ref:'alternate title <label_here>‘'

A link to the literal blocks section is created in this way.
2. links to arbitrary text:

Any text other than a section title (or figure caption) can be referenced similarly, except that it must have an
explicit title:

:ref:'label name here <label_ here>‘

indexing

Section titles are not automatically indexed. Preceding any line with an index directive of the form:
index:: iteml, item2, item3,

inserts index entries for these items, which link back to this position.

An index directive of the form:
index:: pair: itemA; indexB

inserts two entries of the form:
itemA itemB
and

itemB itemA

tables

Tables are entered literally:

X y x implies y

True True True
True False False
False True True
False False True

1.1. General Sphinx usage 9

sphinx Documentation, Release 0.1

yield

X y x implies y
True | True | True
True | False | False
False | True | True
False | False | True

A simple list-entry table is generated with:

list-table:: Caption
theader-rows: 1

* - Left
- Right

* -1
-2

which produces :

Table 1.1:
Caption

Left | Right
1 2

images

The directive is:
image:: filename.type

Given that the pdflatex-builder will prefer a pdf and the html-builder an image-format, using the form:
image:: filename.x

allows builders to select their preferred format, if available.

As with other inclusions, path name is relative to the current directory or to the root directory:

image:: path/to/filename.type
or
image:: /path/to/filename.type

See the page Pulp case study for an example.

math (latex)

inline As with other markup, there is a directive and a mode:

to insert ¢ = ++/a2 + b2 in your code, just prepend it with the :math: mode tag:

to insert :math:‘c= \pm \sgrt{a”2+b”2}"' in your code,

10 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

paragraph-mode The quadratic formula gives in general, two solutions to the equation ax? + bz + ¢ = 0:

—b+Vb? — dac
= N (1.1)
a

in your code, just prepend it with the . .math: : directive:

. math:: x = \frac{-b\pm \sqgrt{b”2-4ac}}{2a}
:label: quadratic

The : label: option creates a label and allows us to refer to the equation elsewhere (see (1.1)).
See Also:

The case study in pulp

footnotes

Footnote labels are established with references enclosed in square brackets and trailing underscore::

place a footnote here [1l]_ please.

The footnote label is either a number or a # (hash). Occurrences in the text of [#]_ or [3]_ link to the set of
footnotes found in following incantation of

rubric:: Footnotes
[#] first footnote here
[3] third footnote

citations

These are of the same form as footnotes, but are any text except hashes and numbers. They can be referenced from
any file in the document tree. See the sphinx documentation for more details (or the source of this page)[Ref]_

1.2 Documenting Python

In this set of pages, the autodoc, autosphinx and pngmath sphinx extensions have been enabled, so that doc-
strings from code are pulled in to restructured-text pages, and with the : show-inheritance: switch, documen-
tation of classes that current classes inherit from is also accessible. A regular sphinx-build incantation builds in this
linked documentation.

Follow the links to python objects to see their docstrings. Using the current version of sphinx (0.6.3), only class
attributes are documented, but instance attribute documentation has recently been added to the development code
(version 1.0.0).

1.2.1 Referencing python code

A draft-article which links to python code, and allows access to code documentation.

1.2. Documenting Python 11

sphinx Documentation, Release 0.1

Pulp Case Study

["' — WAL WA LI

whiskas

Casnwma I.m..lul wu B0 OFN arr--

h.m-—-nun—l |.|| "
[T l-l L1

SEN I,Q_R | e e

ﬁju\.:lnh"

Whiskas cat food, shown above, is manufactured by Uncle Ben’s. Uncle Ben’s want to produce their cat food products
as cheaply as possible while ensuring they meet the stated nutritional analysis requirements shown on the cans. Thus
they want to vary the quantities of each ingredient used (the main ingredients being chicken, beef, mutton, rice, wheat
and gel) while still meeting their nutritional standards.

) o\, (o
({j 3 | ..Q.. A
l

I ol el ™ ol e il

100 g of Whiskas Sener Cat Food

The costs of the chicken, beef, and mutton are $0.013, $0.008 and $0.010 respectively, while the costs of the rice,
wheat and gel are $0.002, $0.005 and $0.001 respectively. (All costs are per gram.) For this exercise we will ignore
the vitamin and mineral ingredients. (Any costs for these are likely to be very small anyway.)

Each ingredient contributes to the total weight of protein, fat, fibre and salt in the final product. The contributions (in
grams) per gram of ingredient are given in the table below.

Simplified Formulation

First we will consider a simplified problem to build a simple Python model.

12 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

Identify the Decision Variables Assume Whiskas want to make their cat food out of just two ingredients: Chicken
and Beef. We will first define our decision variables:
x1 = percentage of chicken meat in a can of cat food

xo = percentage of beef used in a can of cat food

The limitations on these variables (greater than zero) must be noted but for the Python implementation, they are not
entered or listed separately or with the other constraints.

Formulate the Objective Function The objective function becomes:

min 0.013x7 + 0.008x9

The Constraints The constraints on the variables are that they must sum to 100 and that the nutritional requirements
are met:

1.000z; + 1.000z2 = 100.0

0.100z; + 0.200z2 > 8.0

0.080z1 + 0.100x2 > 6.0

0.001z; + 0.005z2 < 2.0

0.002x1 + 0.00525 < 0.4

Solution to Simplified Problem

To obtain the solution to this Linear Program, we can write a short program in Python to call PuLP’s modelling
functions, which will then call a solver. This will explain step-by-step how to write this Python program. It is
suggested that you repeat the exercise yourself. The code-block for this example is found in invalid url

The start of the your file should then be headed with a short commenting section outlining the purpose of the program.
For example:

mwn

The Simplified Whiskas Model Python Formulation for the PuLP Modeller

Authors: Antony Phillips, Dr Stuart Mitchell 2007

mwn

Then you will import PuLP’s functions for use in your code-block:

Import PuLP modeler functions
from pulp import =«

A variable called prob (although its name is not important) is created using the LpProblem function. It has two
parameters, the first being the arbitrary name of this problem (as a string), and the second parameter being either
LpMinimize or LpMaximize depending on the type of LP you are trying to solve:

Create the ’prob’ variable to contain the problem data
prob = LpProblem("The Whiskas Problem",LpMinimize)

1.2. Documenting Python 13

http://pulp-or.googlecode-block.com/svn/trunk/pulp-or/examples/WhiskasModel0.py

sphinx Documentation, Release 0.1

The problem variables x1 and x2 are created using the LpVariable function. It has four parameters, the first is the
arbitrary name of what this variable represents, the second is the lower bound on this variable, the third is the upper
bound, and the fourth is essentially the type of data (discrete or continuous). The options for the fourth parameter are
LpContinuous or LpInteger, with the default as LpContinuous. If we were modelling the number of cans
to produce, we would need to input LpInteger since it is discrete data. The bounds can be entered directly as a
number, or None to represent no bound (i.e. positive or negative infinity), with None as the default. If the first few
parameters are entered and the rest are ignored (as shown), they take their default values. However, if you wish to
specify the third parameter, but you want the second to be the default value, you will need to specifically set the second
parameter as it’s default value. i.e you cannot leave a parameter entry blank. e.g:

LpVariable ("example",None, 100)

The 2 variables Beef and Chicken are created with a lower 1limit of zero
x1 = LpVariable ("ChickenPercent",0)
x2 = LpVariable ("BeefPercent",0)

The variable prob now begins collecting problem data with the += operator. The objective function is logically
entered first, with an important comma , at the end of the statement and a short string explaining what this objective
function is:

The objective function is added to ‘‘prob'' first
prob += 0.013 » x1 + 0.008 * x2, "Total Cost of Ingredients per can"

The constraints are now entered (Note: any “non-negative” constraints were already included when defining the vari-
ables). This is done with the ‘+=" operator again, since we are adding more data to the prob variable. The constraint
is logically entered after this, with a comma at the end of the constraint equation and a brief description of the cause
of that constraint:

The five constraints are entered
prob += x1 + x2 == 100, "PercentagesSum"
prob += 0.100 » x1 + 0.200 *« x2 >= 8.0, "ProteinRequirement"

prob += 0.080 « x1 + 0.100 » x2 >= 6.0, "FatRequirement"
prob += 0.001 « x1 + 0.005 x x2 <= 2.0, "FibreRequirement"
prob += 0.002 » x1 + 0.005 » x2 <= 0.4, "SaltRequirement"

Now that all the problem data is entered, the writeLP function can be used to copy this information into a .Ip file
into the directory that your code-block is running from. Once your code-block runs successfully, you can open this
p file with Notepad to see what the above steps were doing. You will notice that there is no assignment operator
(such as an equals sign) on this line. This is because the function/method called writeLP is being performed to the
variable/object prob (and the string "WhiskasModel.lp" is an additional parameter). The dot . between the
variable/object and the function/method is important and is seen frequently in Object Oriented software (such as this):

The problem data is written to a .lp file
prob.writelP ("WhiskasModel.lp")

The LP is solved using the solver that PuLP chooses. The input brackets after solve are left empty in this case,
however they can be used to specify which solver to use (e.g prob.solve (CPLEX ())):

The problem is solved using PuLP’s choice of solver
prob.solve ()

Now the results of the solver call can be displayed as output to us. Firstly, we request the status of the solution, which
can be one of “Not Solved”, “Infeasible”, “Unbounded”, “Undefined” or “Optimal”. The value of prob.status
(status) is returned as an integer, which must be converted to its significant text meaning using the LpStatus
dictionary. Since LpStatus is a dictionary(dict), its input must be in square brackets:

14 Chapter 1. Table of Contents

http://docs.python.org/library/stdtypes.html#dict

sphinx Documentation, Release 0.1

The status of the solution is printed to the screen
print "Status:", LpStatus|[prob.status]

The variables and their resolved optimum values can now be printed to the screen.

for variable in prob.variables():
print variable.name, "=", variable.varValue

The for loop makes variable cycle through all the problem variable names (in this case just ChickenPercent
and BeefPercent). Then it prints each variable name, followed by an equals sign, followed by its optimum value.
name and varValue are properties of the object variable.

The optimised objective function value is printed to the screen, using the value function. This ensures that the number
is in the right format to be displayed. objective is an attribute of the object prob:

The optimised objective function value is printed to the screen
print "Total Cost of Ingredients per can = ", value(prob.objective)

Running this file should then produce the output to show that Chicken will make up 33.33%, Beef will make up
66.67% and the Total cost of ingredients per can is 96 cents.

The segmented .py file shown above can be obtained in full. Opening the file normally will run it, which will execute
the commands and exit in less than 1 second. You will need to open this file with IDLE or !PyDev to run it and view
the output properly.

Full Formulation

Now we will formulate the problem fully with all the variables. Whilst it could be implemented into Python with little
addition to our method above, we will look at a better way which does not mix the problem data, and the formulation as
much. This will make it easier to change any problem data for other tests. We will start the same way by algebraically
defining the problem:

1. Identify the Decision Variables For the Whiskas Cat Food Problem the decision variables are the percentages
of the different ingredients we include in the can. Since the can is 100g, these percentages also represent the
amount in g of each ingredient included. In STATS 255, the decisions were the amount in g in each cat food,
but it is more convenient to use percentages. We must formally define our decision variables, being sure to state
the units we are using.

x1 = percentage of chicken meat in a can of cat food
x9 = percentage of beef used in a can of cat food

x3 = percentage of mutton used in a can of cat food

x4 = percentage of rice used in a can of cat food

x5 = percentage of wheat bran used in a can of cat food

x¢ = percentage of gel used in a can of cat food

Note that these percentages must be between 0 and 100.

2. Formulate the Objective Function For the Whiskas Cat Food Problem the objective is to minimise the total cost
of ingredients per can of cat food. We know the cost per g of each ingredient. We decide the percentage of each
ingredient in the can, so we must divide by 100 and multiply by the weight of the can in g. This will give us the
weight in g of each ingredient:

min $0.013 x 1 + $0.008 x_2 + $0.010 x_3 + $0.002 x4 + $0.005 x5 + $0.001 x_6

1.2. Documenting Python 15

http://130.216.209.237/engsci392/pulp/WhiskasModel1.py

sphinx Documentation, Release 0.1

3. Formulate the Constraints The constraints for the Whiskas Cat Food Problem are that:
e The sum of the percentages must make up the whole can (= 100%).
» The stated nutritional analysis requirements are met.

The constraint for the “whole can” is:

1+ 22+ 23+ x4 + x5 + 26 = 100

To meet the nutritional analysis requirements, we need to have at least 8g of Protein per 100g, 6g of fat, but no
more than 2g of fibre and 0.4g of salt. To formulate these constraints we make use of the previous table of con-
tributions from each ingredient. This allows us to formulate the following constraints on the total contributions
of protein, fat, fibre and salt from the ingredients:

0.100z1 + 0.200z2 + 0.150x3 + 0.000x4 + 0.040x5 + 0.0260 > 8.0
0.080zx; + 0.100x4 + 0.110x3 + 0.01024 4 0.010250 + 0.0z > 6.0
0.001zq + 0.00522 + 0.003x3 + 0.100240 + 0.150x5 + 0.0z¢ < 2.0
0.002z1 + 0.005z2 + 0.007230 + 0.002z4 + 0.008z5 + 0.0z¢ < 0.4

4. Identify the Data We know the total weight of the can. We also know the cost of the ingredients, the nutritional
analysis requirements and the contribution (per gram) of each ingredient in terms of the nutritional analysis. This
is enough to formulate the necessary mathematical programme, but we will reconsider our data after solving the
mathematical programme and performing some post-optimal analysis.

Solution to Full Problem

To obtain the solution to this Linear Program, we again write a short program in Python to call PuLP’s modelling
functions, which will then call a solver. This will explain step-by-step how to write this Python program with it’s
improvement to the above model. It is suggested that you repeat the exercise yourself. The code-block for this
example is found in the downloadable file.

As with last time, it is advisable to head your file with commenting on its purpose, and the author name and date.
Importing of the PuLP functions is also done in the same way:

mwn

The Full Whiskas Model Python Formulation for the PuLP Modeller

Authors: Antony Phillips, Dr Stuart Mitchell 2007

mwn

Import PuLP modeler functions
from pulp import =

Next, before the prob variable or type of problem are defined, the key problem data is entered into dictionaries. This
includes the list of Ingredients, followed by the cost of each Ingredient, and it’s percentage of each of the four nutrients.
These values are clearly laid out and could easily be changed by someone with little knowledge of programming. The
ingredients are the reference keys, with the numbers as the data.

Creates a list of the Ingredients
Ingredients = ["CHICKEN", "BEEF", "MUTTON", "RICE", "WHEAT", "GEL"]

A Dictionary of the costs of each of the Ingredients is created
costs = {"CHICKEN": 0.013,

16 Chapter 1. Table of Contents

http://pulp-or.googlecode-block.com/svn/trunk/pulp-or/examples/WhiskasModel2.py

sphinx Documentation, Release 0.1

"BEEEF" 0.008,
"MUTTON" 0.010,
"RICE" 0.002,
"WHEAT" 0.005,
"GEL" 0.001}

A dictionary of the protein percent in each of the Ingredients is created

proteinPercent = {"CHICKEN": 0.100,
"BEEEF" 0.200,
"MUTTON" 0.150,
"RICE" 0.000,
"WHEAT" 0.040,
"GEL" 0.000}

A dictionary of the fat percent in each of the Ingredients is created

fatPercent = {"CHICKEN": 0.080,
"BEEF" 0.100,
"MUTTON" 0.110,
"RICE" 0.010,
"WHEAT" 0.010,
"GEL" 0.000}

A dictionary of the fibre percent in each of the Ingredients is created

fibrePercent = {"CHICKEN": 0.001,
"BEEEF" 0.005,
"MUTTON" 0.003,
"RICE" 0.100,
"WHEAT" 0.150,
"GEL" 0.000}

A dictionary of the fibre percent in each of the Ingredients is created

saltPercent = {"CHICKEN": 0.002,
"BEEF" 0.005,
"MUTTON" 0.007,
"RICE" 0.002,
"WHEAT" 0.008,
"GEL" 0.000

The prob variable is created to contain the formulation, and the usual parameters are passed into LpProblem.

Create the ’prob’ variable to contain the problem data
prob = LpProblem("The Whiskas Problem", LpMinimize)

A dictionary called ingredient_vars is created which contains the LP variables, with their defined lower bound
of zero. The reference keys to the dictionary are the Ingredient names, and the data is Ingr_IngredientName.
(e.g. MUTTON: Ingr MUTTON)

A dictionary called ’ingredient_vars’ is created to contain the referenced variables
ingredient_vars = LpVariable.dicts ("Ingr",Ingredients,0)

Since costs and ingredient_vars are now dictionaries with the reference keys as the Ingredient names, the
data can be simply extracted with a list comprehension as shown. The 1pSum function will add the elements of the
resulting list. Thus the objective function is simply entered and assigned a name:

The objective function is added to ‘‘prob'' first
prob += lpSum([costs[i] * ingredient_vars[i] for i in Ingredients]), "Total Cost of Ingredients per

1.2. Documenting Python 17

sphinx Documentation, Release 0.1

Further list comprehensions are used to define the other 5 constraints, which are also each given names describing
them.

The five constraints are added to ‘‘prob''

prob += lpSum([ingredient_vars[i] for i in Ingredients]) == 100, "PercentagesSum"

prob += lpSum([proteinPercent[i] * ingredient_vars([i] for i in Ingredients]) >= 8.0 "ProteinRequirems

prob += lpSum([fatPercent[i] % ingredient_vars[i] for i in Ingredients]) >= 6.0 "FatRequirement"

prob += lpSum([fibrePercent[i] * ingredient_vars[i] for i in Ingredients]) <= 2.0, "FibreRequirement'
([

prob += lpSum([saltPercent[i] * ingredient_vars[i] for i1 in Ingredients <= 0.4, "Salt Requirement"

Following this, the writeLP line etc follow exactly the same as in the simplified example. To see the entire file, it is
available here

The optimal solution is 60% Beef and 40% Gel leading to a Objective Function value of 52 cents per can.

Post-Optimal Analysis

For The Whiskas Cat Food Problem we will not perform any post-optimal analysis. However, as you will remember
from STATS255, a Sensitivity Analysis and a Parametric Analysis can be performed.

1. Validation To validate our solution for The Whiskas Cat Food Problem, we can do a quick check that our solution
makes sense. First, the percentages should add up to 100%. If not, there is something wrong. Next, we can do a
quick check of the constraints to ensure none of them are violated.

Note: For large models you won’t always be able to check the solution by hand.

The final validation is to write up a management summary for your manager and/or client and see if they think our
solution is a valid one. If they identify some (or all) of the solution that is not valid, then you should discuss with them
the reasons why it is invalid and start a “feedback” loop in your optimisation process.

Presentation of Solution and Analysis

Note: The solution for The Whiskas Cat Food Problem is a simple one to summarise. Here is an example management
summary (with the numbers removed):

The Whiskas Cat Food Problem Stuart Mitchell, 2007

Uncle Ben’s want to produce their cat food products as cheaply as possible while ensuring they meet the stated
nutritional analysis requirements shown on the cans. Thus they want to vary the quantities of each ingredient used (the
main ingredients being chicken, beef, mutton, rice, wheat and gel) while still meeting their nutritional standards.

The stated nutritional analysis requirements are: The cost for each ingredient is:
To minimise the cost per 100g can of Whiskas cat food, Whiskas should use g of Chicken, g of
Beef,

The cost per can is

Warning: IMPORTANT When presenting your solution you must be careful about the number of decimal places
you use. You should not use a greater accuracy than your data allows.

Implementation and Ongoing Monitoring

The first step towards Implementation is a good management summary. You may also want to discuss any issues that
may arise from the solution you have found with Uncle Ben’s (for example, if your solution can be implemented on
their production line).

18 Chapter 1. Table of Contents

http://130.216.209.237/engsci392/pulp/WhiskasModel2.py

sphinx Documentation, Release 0.1

Ongoing Monitoring may take the form of:
» Updating your data files and resolving as the data changes (changing costs, nutritional requirements, etc);
* Resolving our model for new products (e.g., 200g cans);

* Looking for possible savings (e.g., analysing the cost of the ingredients to see if any price changes will
affect the ingredient mix).

1.2.2 pulp.constants

This file contains the constant definitions for PuLP Note that hopefully these will be changed into something more
pythonic

isiterable (0bj)

LpStatus
Return status from solver:

LpStatus key string value | numerical value
LpStatusOptimal “Optimal” 1
LpStatusNotSolved “Not Solved” | 0
LpStatusInfeasible | “Infeasible” -1
LpStatusUnbounded “Unbounded” | -2
LpStatusUndefined “Undefined” -3

LpStatusOptimal

LpStatusOptimal = 1

LpStatusNotSolved
LpStatusNotSolved = 0

LpStatusInfeasible
LpStatusInfeasible = -1

LpStatusUnbounded
LpStatusUnbounded = -2

LpStatusUndefined
LpStatusUndefined = -3

LpSenses
Dictionary of values for sense:

LpSenses = { LpMaximize:”"Maximize”, LpMinimize:”Minimize”}
LpMinimize
LpMinimize = 1

LpMaximize
LpMaximize = -1

LpConstraintEQ
LpConstraintEQ = 0

LpConstraintLE
LpConstraintLE = -1

LpConstraintGE
LpConstraintGE = 1

1.2. Documenting Python 19

sphinx Documentation, Release 0.1

LpConstraintSenses

LpConstraint key symbolic value | numerical value
LpConstraintkEQ | “==" 0
LpConstraintLE | “<=" -1
LpConstraintGE | “>=" 1

1.2.3 pulp.pulp

class LpProblem (name="NoName’, sense=1)

Bases: object
An LP Problem
Three important attributes of the problem are:

objective
The objective of the problem.

constraints
An ordered dictionary of constraints(of type LpConstraint) of the problem - indexed by their names.

status
The return status of the problem from the solver.

Some of the more important methods:

solve (solver=None, **kwargs)
Solve the given Lp problem.

This function changes the problem to make it suitable for solving then calls the solver.actualSolve() method
to find the solution

Parameter solver — (optional) the specific solver to be used, defaults to the default solver.

Returns status of solution (pulp.constants.LpStatus)

Side Effects:
* The attributes of the problem object are changed in solver.actualSolve() to reflect the Lp solution
roundSolution (epslnt=1.0000000000000001e-05, eps=9.9999999999999995¢-08)
Rounds the lp variables
Inputs:
* none
Side Effects:
* The lp variables are rounded

setObjective (0bj)
Sets the input variable as the objective function. Used in Columnwise Modelling

Parameter obj — — the objective function of type LpConstraintVar

Side Effects:

* The objective function is set

20

Chapter 1. Table of Contents

http://docs.python.org/library/functions.html#object

sphinx Documentation, Release 0.1

writeLP (filename, writeSOS=1, mip=1)
Write the given Lp problem to a Ip file.

This function writes the specifications (objective function, constraints, variables) of the defined Lp problem
to a file.

Inputs:

* filename — the name of the file to be created.
Side Effects:

 The file is created.

__init__ (name='NoName’, sense=1)
Creates an LP Problem This function creates a new LP Problem with the specified associated parameters
:param name: The name of the problem used in the output .Ip file :param sense: (optional) The LP problem
objective: pulp.constants.LpMinimize (default) or pulp.constants:LpMaximise
:returns: An LP Problem

class LpElement (name)
Base class for LpVariable and LpConstraintVar

class LpvVariable (name, lowBound=None, upBound=None, cat="Continuous’, e=None)
Bases: pulp.pulp.LpElement

A LP variable

__init__ (name, [lowBound = None, upBound = None, cat = LpContinuous, e = None])
The constructor for this class is :

__init__(name [, lowBound = None, upBound = None, cat = LpContinuous, e = None]):

Creates an LP variable.
Parameters
* name — The name of the variable used in the output .Ip file

* lowbound — (optional) The lower bound on this variable’s range. Default is negative infin-
ity

* upBound — (optional) The upper bound on this variable’s range. Default is positive infinity
e cat — (optional) The category this variable is in, Integer or Continuous(default)

* ¢ — (optional) Used for column based modelling: relates to the variable’s existence in the
objective function and constraints

Returns An LP variable

class LpAffineExpression (e=None, constant=0, name=None)
Bases: pulp.odict.OrderedDict

A linear combination of LP variables

An LpAffine Expression can be initalised with the following e = None: an empty Expression e = dict: gives an
expression with the values being the coefficents of the keys e = list: equivalent to dict.items() e = LpElement:
an expression of length 1 with the coefficent 1 e = other: the constant is intialised as e

__init__ (e = None, constant = 0, name = None)

class LpConstraint (e=None, sense=0, name=None, rhs=None)
Bases: pulp.pulp.LpAffineExpression

An LP constraint

1.2. Documenting Python 21

sphinx Documentation, Release 0.1

__init__ (self, e = None, sense = LpConstraintEQ, name = None, rhs = None)

Parameter sense - one of {pulp.constants.LpConstraintEQ,
Lpulp.constants.pConstraintGE, pulp.constants.LpConstraintLE‘}

class FixedElasticSubProblem (constraint, penalty=None, proportionFreeBound=None, proportionFree-

BoundList=None)
Bases: pulp.pulp.LpProblem

Contains the subproblem generated by converting an fixed constraint

Zaixi =b

into an elastic constraint
Parameters

* proportionFreeBound — the proportional bound (+ve and -ve) on constraint violation that is
free from penalty

* proportionFreeBoundList — the proportional bound on constraint violation that is free from
penalty, expressed as a list where [-ve, +ve]

__init__ (self, e = None, sense = LpConstraintEQ, name = None, rhs = None)

1pSum (vector)
Calculate the sum of a list of linear expressions

Inputs:

* vector — A list of linear expressions

1.2.4 pulp.solvers

This file contains the solver classes for PuLP Note that the solvers that require a compiled extension may not work in
the current version

COIN
alias of COINMP_DLL

class COINMP_DLL (mip=1, msg=1, cuts=1, presolve=1, dual=1, crash=0, scale=1, rounding=1, integerPre-

solve=1, strong=35, timeLimit=None, epgap=None)
Bases: pulp.solvers.LpSolver

The COIN_MP LP/MIP solver (via a DLL windows only)

actualSolve (lp)
Solve a well formulated Ip problem

available ()
True if the solver is available

copy ()
Make a copy of self

getSolverVersion ()
returns a solver version string

example: >>> COINMP_DLL().getSolverVersion() # doctest: +ELLIPSIS °..”

22 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

class COIN_CMD (path=None, keepFiles=0, mip=1, msg=1, cuts=1, presolve=1, dual=1, strong=>5, options=, [])
Bases: pulp.solvers.LpSolver_CMD

The COIN CLP/CBC LP solver

actualSolve (lp)
Solve a well formulated Ip problem

available ()
True if the solver is available

copy ()
Make a copy of self

defaultPath ()

readsol_CBC (filename, Ip, vs)
Read a CBC solution file

readsol_CLP (filename, Ip, vs)
Read a CLP solution file

solve_CBC (/p)
Solve a MIP problem using CBC

solve_CLP (lp)
Solve a problem using CLP

CPLEX
alias of CPLEX_ CMD

class CPLEX_CMD (path=None, keepFiles=0, mip=1, msg=1, options=, [])
Bases: pulp.solvers.LpSolver_CMD

The CPLEX LP solver

actualSolve (lp)
Solve a well formulated Ip problem

available ()
True if the solver is available

defaultPath ()

readsol (filename)
Read a CPLEX solution file

class CPLEX_DLL (mip=True, msg=True, options=, [], *args, **kwargs)
Bases: pulp.solvers.LpSolver

The CPLEX LP/MIP solver PHANTOM Something went wrong!!!!

actualSolve (lp)
Solve a well formulated Ip problem

available ()
True if the solver is available

GLPK
alias of GLPK_CMD

class GLPK_CMD (path=None, keepFiles=0, mip=1, msg=1, options=, [])
Bases: pulp.solvers.LpSolver_CMD

The GLPK LP solver

1.2. Documenting Python 23

sphinx Documentation, Release 0.1

actualSolve (lp)
Solve a well formulated Ip problem

available ()
True if the solver is available

defaultPath ()

readsol (filename)
Read a GLPK solution file

class GUROBI (mip=True, msg=True, options=, [], *args, **kwargs)
Bases: pulp.solvers.LpSolver

The GUROBI LP/MIP solver PHANTOM Something went wrong!!!!

actualSolve (Ip, callback=None)
Solve a well formulated 1p problem

available ()
True if the solver is available

class LpSolver (mip=True, msg=True, options=, [], *args, **kwargs)
A generic LP Solver

actualResolve (lp, **kwargs)
uses existing problem information and solves the problem If it is not implelemented in the solver just solve
again

actualSolve (lp)
Solve a well formulated Ip problem

available ()
True if the solver is available

copy ()
Make a copy of self

getCplexStyleArrays (lp, senseDict={0: 'E’, 1: 'G’, -1: ’L’}, LpVarCategories={"Integer’: 'I’, ’Continuous’:
'C’}, LpObjSenses={1: 1, -1: -1}, infBound=1e+20)
returns the arrays suitable to pass to a cdll Cplex or other solvers that are similar

Copyright (c) Stuart Mitchell 2007

solve (lp)
Solve the problem Ip

class LpSolver_CMD (path=None, keepFiles=0, mip=1, msg=1, options=, [])
Bases: pulp.solvers.LpSolver

A generic command line LP Solver

copy ()
Make a copy of self

defaultPath ()

static executable (command)
Checks that the solver command is executable, And returns the actual path to it.

static executableExtension (name)

setTmpDir ()
Set the tmpDir attribute to a reasonnable location for a temporary directory

24 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

exception PulpSolverError
Bases: exceptions.Exception

Pulp Solver-related exceptions

class XPRESS (path=None, keepFiles=0, mip=1, msg=1, options=, [])
Bases: pulp.solvers.LpSolver_CMD

The XPRESS LP solver

actualSolve (lp)
Solve a well formulated Ip problem

available ()
True if the solver is available

defaultPath ()

readsol (filename)
Read an XPRESS solution file

ctypesArrayFill (mylList, type=<class ’ctypes.c_double’>)
Creates a c array with ctypes from a python list type is the type of the ¢ array

initialize (file=None)
reads the configuration file to initialise the module

1.2.5 pulp.odict

A dict that keeps keys in insertion order

class OrderedDict (init_val=(), strict=False)
Bases: dict

A class of dictionary that keeps the insertion order of keys.

All appropriate methods return keys, items, or values in an ordered way.

All normal dictionary methods are available. Update and comparison is restricted to other OrderedDict objects.
Various sequence methods are available, including the ability to explicitly mutate the key ordering.
__contains___ tests:

>>> d = OrderedDict (((1, 3),))

>>> 1 in d

1

>>> 4 in d
0

__getitem__ tests:

>>> OrderedDict (((1, 3), (3, 2), (2, 1)))I[2]
1
>>> OrderedDict (((1, 3), (3, 2), (2, 1)))[4]

Traceback (most recent call last):
KeyError: 4

__len__ tests:

1.2. Documenting Python 25

http://docs.python.org/library/exceptions.html#exceptions.Exception
http://docs.python.org/library/stdtypes.html#dict

sphinx Documentation, Release 0.1

>>>
0
>>>

3

len (OrderedDict ())

len (OrderedDict (((1,

get tests:

>>>
>>>
3
>>>
1
>>>
5
>>>

OrderedDict ([(1,

d = OrderedDict (((1,
d.get (1)

d.get (4) is None

d.get (4, 5)

d

3. (3

has_key tests:

>>>
>>>
1
>>>
0

d = OrderedDict (((1,
d.has_key (1)

d.has_key (4)

clear ()

>>> d = OrderedDict ((
>>> d.clear ()
>>> d

OrderedDict ([])

(L, 3),

copy ()

>>> OrderedDict (((1,
OrderedDict ([(1, 3),

3)
(3,

(3,

index (key)

Return the position of the specified key in the OrderedDict.

>>> d = OrderedDict (((1,
>>> d.index (3)

1

>>> d.index (4)

Traceback (most recent call last):
ValueError: list.index(x):

3, (3, 2), D))

x not in list

insert (index, key, value)

Takes index, key, and value as arguments.

Sets key to value, so that key is at position index in the OrderedDict.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.insert (0, 4, 0)

>>> d

OrderedDict ([(4, 0), (1, 3), (3, 2), (2, 1)])
>>> d.insert (0, 2, 1)

26

Chapter 1

. Table of Contents

sphinx Documentation, Release 0.1

>>> d

OrderedDict ([(2, 1), (4, 0), (1, 3), (3, 2)1)
>>> d.insert (8, 8, 1)

>>> d

OrderedDict ([(2, 1), (4, 0), (1, 3), (3, 2), (8, 1)1)

items ()
items returns a list of tuples representing all the (key, value) pairs in the dictionary.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.items ()

[(1, 3), (3, 2), (2, 1)]

>>> d.clear ()

>>> d.items ()

(]

iteritems ()

>>> ii = OrderedDict (((1, 3), (3, 2), (2, 1))).iteritems/()
>>> ii.next ()

(1, 3)

>>> ii.next ()

(3, 2)

>>> 1ii.next ()

(2, 1)

>>> ii.next ()

Traceback (most recent call last):

StopIteration

iterkeys ()

>>> ii = OrderedDict (((1, 3), (3, 2), (2, 1))).iterkeys()
>>> ii.next ()

>>> ii.next ()

>>> 11.next ()

2

>>> ii.next ()

Traceback (most recent call last):
StopIteration

itervalues ()

>>> jv = OrderedDict (((1, 3), (3, 2), (2, 1))).itervalues()
>>> iv.next ()

>>> jv.next ()

>>> iv.next ()

1

>>> iv.next ()

Traceback (most recent call last):
StopIteration

keys ()
Return a list of keys in the OrderedDict.

1.2. Documenting Python 27

sphinx Documentation, Release 0.1

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.keys ()
(1, 3, 2]

pop (key, *args)
No dict.pop in Python 2.2, gotta reimplement it

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.pop (3)

2

>>> d

OrderedDict ([(1, 3), (2, 1)1])

>>> d.pop (4)

Traceback (most recent call last):

KeyError: 4

>>> d.pop (4, 0)

0

>>> d.pop (4, 0, 1)

Traceback (most recent call last):

TypeError: pop expected at most 2 arguments, got 3

popitem (i=-1)
Delete and return an item specified by index, not a random one as in dict. The index is -1 by default (the
last item).

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.popitem/()

(2, 1)

>>> d

OrderedDict ([(1, 3), (3, 2)1)

>>> d.popitem(0)

(1, 3)

>>> OrderedDict () .popitem()

Traceback (most recent call last):
KeyError: ’'popitem(): dictionary is empty’
>>> d.popitem(2)

Traceback (most recent call last):
IndexError: popitem(): index 2 not valid

rename (old_key, new_key)
Rename the key for a given value, without modifying sequence order.

For the case where new_key already exists this raise an exception, since if new_key exists, it is ambiguous
as to what happens to the associated values, and the position of new_key in the sequence.

>>> od = OrderedDict ()
>>> od[’a’"] = 1
>>> od['b’] = 2

>>> od.items ()
[("a", 1), ("b", 2)]
>>> od.rename('b’, '
>>> od.items ()

[(ra", 1), ("c", 2)]
>>> od.rename('c’, "a’)

Traceback (most recent call last):
ValueError: New key already exists: ’'a’

c’)

28 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

>>> od.rename ('d’, 'b’)
Traceback (most recent call last):
KeyError: ’'d’

reverse ()
Reverse the order of the OrderedDict.

>>> d OrderedDict (((1, 3), (3, 2), (2, 1)))

>>> d.reverse ()
>>> d

OrderedDict ([(2, 1), (3, 2), (1, 3)1)

setdefault (key, defval=None)

>>> d OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.setdefault (1)

3

>>> d.setdefault (4) is None

True

>>> d

OrderedDict ([(1, 3), (3, 2), (2, 1), (4, None)])
>>> d.setdefault (5, 0)

0

>>> d

OrderedDict ([(1, 3), (3, 2), (2, 1), (4, None), (5, 0)])

setitems (ifems)
This method allows you to set the items in the dict.

It takes a list of tuples - of the same sort returned by the items method.
>>> d = OrderedDict ()

>>> d.setitems (((3, 1), (2, 3), (1, 2)))

>>> d

OrderedDict ([(3, 1), (2, 3), (1, 2)1)

setkeys (keys)
setkeys all ows you to pass in a new list of keys which will replace the current set. This must contain
the same set of keys, but need not be in the same order.

If you pass in new keys that don’t match, a KeyError will be raised.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.keys ()

(1, 3, 21

>>> d.setkeys ((1, 2, 3))

>>> d

OrderedDict ([(1, 3), (2, 1), (3, 2)1)

>>> d.setkeys([’a’, 'b’, 'c’])

Traceback (most recent call last):

KeyError: ’'Keylist is not the same as current keylist.’

setvalues (values)
You can pass in a list of values, which will replace the current list. The value list must be the same len as
the OrderedDict.

(OravalueError is raised.)

1.2. Documenting Python 29

sphinx Documentation, Release 0.1

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))

>>> d.setvalues ((1, 2, 3))

>>> d

OrderedDict ([(1, 1), (3, 2), (2, 3)1)

>>> d.setvalues ([6])

Traceback (most recent call last):

ValueError: Value list is not the same length as the OrderedDict.

sort (*args, **kwargs)
Sort the key order in the OrderedDict.

This method takes the same arguments as the 1ist . sort method on your version of Python.

>>> d = OrderedDict (((4, 1), (2, 2), (3, 3), (1, 4)))
>>> d.sort ()

>>> d

OrderedDict ([(1, 4), (2, 2), (3, 3), (4, 1)1)

update (from_od)
Update from another OrderedDict or sequence of (key, value) pairs

>>> d = OrderedDict (((1, 0), (0, 1)))

>>> d.update (OrderedDict (((1, 3), (3, 2), (2, 1))))

>>> d

OrderedDict ([(1, 3), (0, 1), (3, 2), (2, 1)1)

>>> d.update ({4: 4})

Traceback (most recent call last):

TypeError: undefined order, cannot get items from dict

>>> d.update((4, 4))

Traceback (most recent call last):

TypeError: cannot convert dictionary update sequence element "4" to a 2-item sequence

values (values=None)
Return a list of all the values in the OrderedDict.

Optionally you can pass in a list of values, which will replace the current list. The value list must be the
same len as the OrderedDict.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.values ()
[3, 2, 1]

class SequenceOrderedDict (init_val=(), strict=True)

Bases: pulp.odict.OrderedDict
Experimental version of OrderedDict that has a custom object for keys, values, and items.
These are callable sequence objects that work as methods, or can be manipulated directly as sequences.

Test for keys, items and values.

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)))
>>> d

SequenceOrderedDict ([(1, 2), (2, 3), (3, 4)1)

>>> d.keys

[1, 2, 3]

>>> d.keys ()

[1, 2, 3]

30

Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

>>> d.setkeys ((3, 2, 1))

>>> d

SequenceOrderedDict ([(3, 4), (2, 3), (1, 2)1)
>>> d.setkeys((1, 2, 3))

>>> d.keys[0]

1

>>> d.keys[:]

[1, 2, 3]

>>> d.keys[-1]

>>> d.keys[—-2]

2

>>> d.keys[0:2] = [2, 1]

>>> d

SequenceOrderedDict ([(2, 3), (1, 2), (3, 4)1)
>>> d.keys.reverse ()

>>> d.keys

(3, 1, 2]

>>> d.keys = [1, 2, 3]

>>> d

SequenceOrderedDict ([(1, 2), (2, 3), (3, 4)1)
>>> d.keys = [3, 1, 2]

>>> d

SequenceOrderedDict ([(3, 4), (1, 2), (2, 3)1)
>>> a = SequenceOrderedDict ()
>>> b = SequenceOrderedDict ()

>>> a.keys == b.keys
1

>>> af’a’] = 3

>>> a.keys == b.keys
0

>>> pbl[’a’] = 3

>>> a.keys == b.keys
1

>>> pb[’'b’] = 3

>>> a.keys == b.keys
0

>>> a.keys > Db.keys
0

>>> a.keys < b.keys
1

>>> a3’ in a.keys

1

>>> len (b.keys)

2

>>> /¢’ in d.keys

0

>>> 1 in d.keys

1

>>> [v for v in d.keys]
[3, 1, 2]

>>> d.keys.sort ()
>>> d.keys

[1, 2, 3]

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)), strict=True)
>>> d.keys[::-1] = [1, 2, 3]
>>> d

SequenceOrderedDict ([(3, 4), (2, 3), (1, 2)1)

1.2. Documenting Python 31

sphinx Documentation, Release 0.1

>>> d.keys[:2]

[3, 2]

>>> d.keys[:2] = [1, 3]

Traceback (most recent call last):

KeyError: ’'Keylist is not the same as current keylist.’

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)))
>>> d

SequenceOrderedDict ([(1, 2), (2, 3), (3, 4)1)
>>> d.values

[2, 3, 4]

>>> d.values ()

[2, 3, 4]

>>> d.setvalues ((4, 3, 2))

>>> d

SequenceOrderedDict ([(1, 4), (2, 3), (3, 2)1)
>>> d.values[::-1]

[2, 3, 4]

>>> d.values[0]

4

>>> d.values[-2]

3

>>> del d.values[0]

Traceback (most recent call last):

TypeError: Can’t delete items from values
>>> d.values[::2] = [2, 4]

>>> d

SequenceOrderedDict ([(1, 2), (2, 3), (3, 4)1)
>>> 7 in d.values

0

>>> len (d.values)

3

>>> [val for val in d.values]
[2, 3, 4]

>>> d.values[-1] = 2
>>> d.values.count (2)
2

>>> d.values.index (2)
0

>>> d.values[-1] = 7
>>> d.values

[2, 3, 7]

>>> d.values.reverse ()

>>> d.values

[7, 3, 2]

>>> d.values.sort ()

>>> d.values

[2, 3, 7]

>>> d.values.append(’anything’)
Traceback (most recent call last):
TypeError: Can’t append items to values
>>> d.values = (1, 2, 3)

>>> d

SequenceOrderedDict ([(1, 1), (2, 2), (3, 3)1)

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)))
>>> d

32 Chapter 1. Table of Contents

sphinx Documentation, Release 0.1

SequenceOrderedDict ([(1, 2), (2, 3), (3, 4)1)
>>> d.items ()

(1, 2y, (2, 3), (3, 4)]

>>> d.setitems ([(3, 4), (2 ,3), (1, 2)])

>>> d

SequenceOrderedDict ([(3, 4), (2, 3), (1, 2)1)
>>> d.items[0]
(3, 4)

>>> d.items[:—-1]
[(3, 4), (2, 3)]
>>> d.items[1] =
>>> d.items

[(3, 4), (6, 3), (1, 2)]

>>> d.items[1:2] = [(9, 9)]

>>> d

SequenceOrderedDict ([(3, 4), (9, 9), (1, 2)1)
>>> del d.items([1:2]

>>> d

SequenceOrderedDict ([(3, 4), (1, 2)1)

>>> (3, 4) in d.items

(6, 3)

1

>>> (4, 3) in d.items
0

>>> len(d.items)

2

>>> [v for v in d.items]

[(3, 4), (1, 2)]

>>> d.items.count ((3, 4))

1

>>> d.items.index ((1, 2))

1

>>> d.items.index ((2, 1))
Traceback (most recent call last):
ValueError: list.index(x): x not in list
>>> d.items.reverse ()

>>> d.items

[(1, 2), (3, 4)]

>>> d.items.reverse ()

>>> d.items.sort ()

>>> d.items

[(1, 2), (3, 4)]

>>> d.items.append((5, 6))

>>> d.items

[(x, 2), (3, 4), (5, 6)]

>>> d.items.insert (0, (0, 0))

>>> d.items

[0, 0), (1, 2), (3, 4), (5 6)]
>>> d.items.insert (-1, (7, 8))

>>> d.items

[0, 0), (1, 2y, (3, 4), (7, 8), (5, 6)]
>>> d.items.pop ()

(5, 6)

>>> d.items

[0, 0), (1, 2), (3, 4), (7, 8)]
>>> d.items.remove ((1, 2))

>>> d.items

[0, 0), (3, 4), (7, 8)]

>>> d.items.extend ([(1, 2), (5, 6)])

1.2

Documenting Python

33

sphinx Documentation, Release 0.1

>>> d.items
[0, 0), (3, 4), (7, 8), (1, 2), (5, 6)]

1.3 Indices and tables

e Index
e Module Index
e Search Page

1.4 Glossary

LP Linear Programming

MIP Mixed Integer Programming

34 Chapter 1. Table of Contents

CHAPTER
TWO

INDICES AND TABLES

e Index
e Module Index
 Search Page

35

sphinx Documentation, Release 0.1

36 Chapter 2. Indices and tables

BIBLIOGRAPHY

[Ref] In the doc directory of your sphinx installation.

37

sphinx Documentation, Release 0.1

38 Bibliography

F)

pulp.constants, 19
pulp.odict, 25
pulp.solvers,?22

MODULE INDEX

39

sphinx Documentation, Release 0.1

40 Module Index

Symbols

__init__() (pulp.pulp.FixedElasticSubProblem method),
22

__init__() (pulp.pulp.LpAffineExpression method), 21

__init__() (pulp.pulp.LpConstraint method), 21

__init__() (pulp.pulp.LpProblem method), 21

__init__() (pulp.pulp.LpVariable method), 21

A

actualResolve() (pulp.solvers.LpSolver method), 24
actualSolve() (pulp.solvers.COIN_CMD method), 23
actualSolve() (pulp.solvers. COINMP_DLL method), 22
actualSolve() (pulp.solvers. CPLEX_CMD method), 23
actualSolve() (pulp.solvers. CPLEX_DLL method), 23
actualSolve() (pulp.solvers. GLPK_CMD method), 23
actualSolve() (pulp.solvers. GUROBI method), 24
actualSolve() (pulp.solvers.LpSolver method), 24
actualSolve() (pulp.solvers. XPRESS method), 25
autodoc, 1

available() (pulp.solvers.COIN_CMD method), 23
available() (pulp.solvers. COINMP_DLL method), 22
available() (pulp.solvers. CPLEX_CMD method), 23
available() (pulp.solvers.CPLEX_DLL method), 23
available() (pulp.solvers.GLPK_CMD method), 24
available() (pulp.solvers. GUROBI method), 24
available() (pulp.solvers.LpSolver method), 24
available() (pulp.solvers.XPRESS method), 25

C

clear() (pulp.odict.OrderedDict method), 26
COIN (in module pulp.solvers), 22

COIN_CMD (class in pulp.solvers), 22
COINMP_DLL (class in pulp.solvers), 22
constraints (pulp.pulp.LpProblem attribute), 20
copy() (pulp.odict.OrderedDict method), 26
copy() (pulp.solvers.COIN_CMD method), 23
copy() (pulp.solvers. COINMP_DLL method), 22
copy() (pulp.solvers.LpSolver method), 24
copy() (pulp.solvers.LpSolver_CMD method), 24
CPLEX (in module pulp.solvers), 23
CPLEX_CMD (class in pulp.solvers), 23

INDEX

CPLEX_DLL (class in pulp.solvers), 23
ctypesArrayFill() (in module pulp.solvers), 25

D

defaultPath() (pulp.solvers.COIN_CMD method), 23
defaultPath() (pulp.solvers.CPLEX_CMD method), 23
defaultPath() (pulp.solvers. GLPK_CMD method), 24
defaultPath() (pulp.solvers.LpSolver_CMD method), 24
defaultPath() (pulp.solvers.XPRESS method), 25
doctest, 1

E

executable() (pulp.solvers.LpSolver_CMD
method), 24

executableExtension() (pulp.solvers.LpSolver_ CMD
static method), 24

static

F

FixedElasticSubProblem (class in pulp.pulp), 22

G

getCplexStyleArrays() (pulp.solvers.LpSolver method),
24
getSolverVersion()
method), 22
GLPK (in module pulp.solvers), 23
GLPK_CMD (class in pulp.solvers), 23
GUROBI (class in pulp.solvers), 24

index() (pulp.odict.OrderedDict method), 26
initialize() (in module pulp.solvers), 25

insert() (pulp.odict.OrderedDict method), 26
intersphinx, 1

isiterable() (in module pulp.constants), 19
items() (pulp.odict.OrderedDict method), 27
iteritems() (pulp.odict.OrderedDict method), 27
iterkeys() (pulp.odict.OrderedDict method), 27
itervalues() (pulp.odict.OrderedDict method), 27

K

keys() (pulp.odict.OrderedDict method), 27

(pulp.solvers. COINMP_DLL

41

sphinx Documentation, Release 0.1

L

linkcheck, 1

LP, 34

LpAffineExpression (class in pulp.pulp), 21
LpConstraint (class in pulp.pulp), 21
LpConstraintEQ (in module pulp.constants), 19
LpConstraintGE (in module pulp.constants), 19
LpConstraintLE (in module pulp.constants), 19
LpConstraintSenses (in module pulp.constants), 19
LpElement (class in pulp.pulp), 21

LpMaximize (in module pulp.constants), 19
LpMinimize (in module pulp.constants), 19
LpProblem (class in pulp.pulp), 20

LpSenses (in module pulp.constants), 19
LpSolver (class in pulp.solvers), 24
LpSolver_CMD (class in pulp.solvers), 24
LpStatus (in module pulp.constants), 19
LpStatusInfeasible (in module pulp.constants), 19
LpStatusNotSolved (in module pulp.constants), 19
LpStatusOptimal (in module pulp.constants), 19
LpStatusUnbounded (in module pulp.constants), 19
LpStatusUndefined (in module pulp.constants), 19
IpSum() (in module pulp.pulp), 22

LpVariable (class in pulp.pulp), 21

M

MIP, 34

O

objective (pulp.pulp.LpProblem attribute), 20
OrderedDict (class in pulp.odict), 25

P

pop() (pulp.odict.OrderedDict method), 28
popitem() (pulp.odict.OrderedDict method), 28
pulp.constants (module), 19

pulp.odict (module), 25

pulp.solvers (module), 22

PulpSolverError, 24

R

readsol() (pulp.solvers. CPLEX_CMD method), 23
readsol() (pulp.solvers.GLPK_CMD method), 24
readsol() (pulp.solvers.XPRESS method), 25
readsol_CBC() (pulp.solvers.COIN_CMD method), 23
readsol_CLP() (pulp.solvers.COIN_CMD method), 23
rename() (pulp.odict.OrderedDict method), 28
reverse() (pulp.odict.OrderedDict method), 29
root-directory, 5

roundSolution() (pulp.pulp.LpProblem method), 20

S

SequenceOrderedDict (class in pulp.odict), 30

setdefault() (pulp.odict.OrderedDict method), 29
setitems() (pulp.odict.OrderedDict method), 29
setkeys() (pulp.odict.OrderedDict method), 29
setObjective() (pulp.pulp.LpProblem method), 20
setTmpDir() (pulp.solvers.LpSolver_CMD method), 24
setvalues() (pulp.odict.OrderedDict method), 29
solve() (pulp.pulp.LpProblem method), 20

solve() (pulp.solvers.LpSolver method), 24
solve_CBC() (pulp.solvers.COIN_CMD method), 23
solve_CLP() (pulp.solvers.COIN_CMD method), 23
sort() (pulp.odict.OrderedDict method), 30
sphinx-build, 4

sphinx-quickstart, 3

status (pulp.pulp.LpProblem attribute), 20

U

update() (pulp.odict.OrderedDict method), 30

Vv

values() (pulp.odict.OrderedDict method), 30

W

writeLP() (pulp.pulp.LpProblem method), 20

X

XPRESS (class in pulp.solvers), 25

42

Index

	Table of Contents
	General Sphinx usage
	Documenting Python
	Indices and tables
	Glossary

	Indices and tables
	Bibliography
	Module Index
	Index

